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The translational-rotational motion of an orbital station in the Ear th-Moon system is investigated. The orbital station is 
regarded as a body of variable composition with a solid shell and a low-thrust jet engine placed on it, having constant autonomous 
orientation in a system of coordinates rotating with the Moon. It is shown that, by means of a reaction acceleration of small 
and constant modulus, one can stabilize both the new libration points themselves and the positions of  relative equilibrium of  
the orbital station. Each value of  the reaction acceleration, depending on its orientation, corresponds to a whole family of libration 
points, surrounding the classical collinear point, but only some of them can be stable. It is shown that, when the ellipticity of 
the Moon's  orbit is taken into account, periodic translational-rotational motions of  the orbital station in the neighbourhood 
of these points can occur with a period equal to the period of rotation of the Moon. © 1999 Elsevier Science Ltd. All rights 
reserved. 

In previous investigations the problem of the stability of the positions of relative equilibrium of an orbital 
station in the neighbourhood of the collinear libration points of the Earth-Moon system has usually 
been solved in a restricted formulation: the orbital station was either assumed to be a point mass [1-4], 
or it was assumed that the location of the centre of mass of the orbital station (regarded as a solid or 
a gyrostat) at the libration point could be ensured a priori by special control forces [5], the nature of 
which and the form of the control were not discussed. 

Consider the motion of an orbital station in the gravity field of the Earth and the Moon, assuming 
the latter to be points with masses m I and m2, moving in elliptic Kepler orbits around one another. 
Unlike the classical elliptical three-body problem, we will assume that the orbital station is not a point 
mass, but a body of variable composition with a solid shell and a triaxial ellipsoid of inertia. We will 
assume that the mass of the orbital station m is exponentially variable: m = m0exp(-~t), ~. > 0. We will 
also assume that as the working body becomes depleted, the position of the centre of mass of the orbital 
station, the directions of the principal axes of inertia with respect to its body, and also the values of the 
corresponding radii of inertia remain unchanged (which can be ensured, for example, by an appropriate 
change in the dimensions of the working body). 

We will assume that a jet engine, which gives the orbital station a reaction acceleration w of constant 
modulus, which passes through its centre of mass, has an autonomous system for stabilizing the direction 
of the thrust in a system of coordinates Oxyz, which rotates together with the Moon. The origin of this 
system of coordinates is at the centre of mass of the Earth and the Moon, and the Ox and Oy axes lie 
in the plane of their orbits (the Ox axis is directed along the Earth-Moon line), while the Oz axis is 
perpendicular to this plane. 

We will introduce two other rectangular systems of coordinates with origin at the centre of mass of 
the station: and orbital CXYZ system (CZ axis is directed along the radius vector of the centre of mass 
C, drawn from the point O, the CX axis supplements the system up to the right one) and a system 
connected with the solid shell of the orbital station Cx1x2x 3 with axes directed along the principle axes 
of inertia of the orbital station. The position of the connected system of coordinates with respect to 
the orbital system is specified by the Euler angles ~, ~0, 0. 

When calculating the force functions Ut and U2 of the Newtonian attraction forces applied to the 
orbital station due to the Earth and the Moon, we will assume that its characteristic dimension l is 

2 2 2 1/2 much less than the distance r i = [ ( x  - ai) + y + z ] (i = 1, 2 and al and az are the coordinates of 
the Earth and the Moon in the Oxyz system) between the orbital station and the Earth and the Moon. 

3 Then, neglecting terms of the order of (l/a) and higher (a is the semiaxis of the Moon s orbit), we obtain 
the following approximate expressions for U/(i = 1, 2) [6] 
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Ui =Stim 3gi ~ (a jT2- -~)  (1.1) 
ri 2r/3 j=l 

Here  ~tl and ~2 are the gravitational parameters  of the Ear th  and the Moon, respectively, Aj are the 
principal central moments  of inertia of  the orbital station, while 

TO = [(x - ai)aj j + ya2j+ za3j]r71 (1.2) 

are the direction cosines of  the radius vectors ri with respect to the connected axes Cx~x2x 3 where the 
quantities asy are expressed in terms of the Euler  angles by the formulae 

all = cos¥coscp - sin~sinqx:os0 

al 2 = - cos~sincp - sin~coscpcos0 

a~3 = sin~sin0, a2n = sinyeosq> + cosvsinq~cos0 (1.3) 

a22 = - sin~sinq> - cos~cosq)cos0, a23 = - cosvsin0 

a31 = sinq>sin0, a32 = cosq>sin0, a33 = cos0 

Taking into account the fact that the terms that occur in (1.1) which depend on the geometry of the 
masses are proportional  to (l/a) 2 and are of  the order of 10 -14 when l ~< 30 m, we can ignore them in 
the equations of  motion of the centre of  mass, i.e. the translational motion of the orbital station can 
be considered separately from the rotational motion (but not vice versa). 

Choosing the true anomaly of the Moon 's  orbit v as the new independent  variable and changing to 
Nechvil coordinates [2] ~, ~1, ~ using the formulae (e is the eccentricity of  the Moon 's  orbit) 

x = p~, y = prl, z = ~, p = a(l  - e2)/(1 - ecosv) 

and also taking into account the fact that the condition for the value of the reaction acceleration and 
its orientation in the rotating system to be fixed enables us to regard the force field as a potential field, 
we obtain the following equations of  motion of the centre of mass of  the orbital station (a dot denotes 
differentiation with respect to v, and the quantity a is taken as the unit of length) 

• . . aw~  
~ -  2rl = - V ( v )  O~ 

i l+  2~ = -~l/(V) ~ (1.4) 

w' 

Here  

WI = 2 2 k, Pn P2 J 

, wa20-e )2 
St= m2 , V(V) = , w =  

m n + m  2 1 - e c o s v  lXl +St2 

pl : (¢ + . )2  + n2 + ; 2  : + . _  02 + n2 + ;2 

and o~, o n, o;  are the direction cosines of  the reaction acceleration in the rotating system O~1~. 
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The total potential energy, which determines the rotational motion of the orbital station, can be written 
as [6, 7] 

=--~' Y. A s a ' s  +-- Y. A)'I~ - 
2 s=, 2i=, p/3f~=, 

(1.5) 

Note that both system (1.4) and the potential energy (1.5) are analytic functions of the eccentricity 
of the Moon's orbit e, which can be regarded as a small parameter. When this parameter vanishes the 
system of equations of the translational-rotational motion of the orbital station becomes autonomous 
and possesses the generalized energy integral T2 + W1 + 1412 = const (T2 is the quadratic part of the 
kinetic energy, expressed in terms of ~, rl, ~, rl, 0, ~ and their derivatives). When e # 0 this system of 
equations is periodic with period 2~ with respect to the true anomaly v. 

2. We will show that when e = 0 the system of equations of translational-rotational motion of the 
orbital station has a family of steady motions, to which the positions of relative equilibrium of 
the orbital station in the rotating system of coordinates O~rl~ correspond. As follows from (1.3), the 
equilibrium values of the coordinates of the centre of mass of the orbital station (the new libration points) 
are found from the conditions which define the steady values of the function W 1 and which lead to the 
equations 

~ + ~-,~,(~ + p)- ~(~ +p- l )=  o 

~,o,~ + (1 - a)rl = o, a,o; - ag  = o (2.1) 

I tl "~-~' 0~2 =~-2' C[.----(X I -I-0~ 2/ 
From these equations one can either determine the coordinates of the libration points, given the 

value of the acceleration w and the direction cosines a¢, an, c¢, or, conversely, obtain the necessary 
value of the reaction acceleration and its orientation from the specified coordinates of the libration 
points. The first way is not very promising since it leads to the need to solve a complex system of 
non-linear equations in the coordinates ~, rl, ~ of the libration points. The inverse formulation of the 
problem enables one to obtain immediately the value of the necessary acceleration w and its orientation. 

In fact, by squaring each of Eqs (2.1) and adding, we obtain 

n7 2 = ( ~  - i x l (  ~ + ~t) - ot~(~ + ILl. - 1 ) )  2 + (1  - a ) z l ]  2 + ot2~ "2 (2.2) 

In a small neighbourhood of the classical libration point, the necessary values of w will obviously be 
small and they can be calculated by expanding the right-hand side of (2.2) in a series in powers of the 
deviations 

¢. = ~ - ¢ 0 ,  n.  = n - n 0 , ; .  = ; - ; 0  

where ~ ,  rl0, ~ are the coordinates of the classical libration points. For collinear libration points (which 
are the most interesting from the applied point of view) we will have (the zero subscript here and 
henceforth denotes that these quantities must be taken at the classical libration points) 

~,z I-,9 w,'l 2 l-a 2w, ]2 z 

--[ + + o¢. +... 
(2.3) 

Hence, in the first approximation, for the same value of the acceleration w, we obtain an innumerable 
set of new libration points, situated on the surface of an ellipsoid, surrounding the classical libration 
point, with centre at this point. The necessary orientation of the reaction acceleration vector (its direction 
cosines) can be found from (2.1). 

For the derivatives occurring in (2.3) we obtain 
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I 1 
a-UJo L  -rJ l' L- rJo 

Thus, for the classical libration point behind the Moon, denoting its distance from the Moon by 
(e ~- 0.156...),  we will have 

ao = Ix( 1 + e)-3 + ( 1 - 11)~:-3 _~ (1 - 11)~--3 

Hence, for the values of the semiaxes of the ellipsoid a~, a n, a ;  with centre at this point we obtain 

a~ = ½ ~3, an = ~3,  a;  = ~'1~ 3 / (1  - It) 

Hence, the ellipsoid considered is (since ~t < < 1) close to the ellipsoid of rotation, flattened along 
the Ok axis, with semiaxes along the two other coordinates axes, approximately double the semiaxis 
corresponding to the axis of rotation. 

We will now find the positions of relative equilibrium of the orbital station itself as a solid in an orbital 
system of coordinates CXYZ. Taking into account the aboveassumption that the radii of inertia of the 
orbital station are constant we can regard the function W2 = W2/m as the potential energy characterizing 
the rotational motion of the orbital station, instead of (1.5). This will not depend explicitly on time, 
since instead of the moments of inertiaAj the squares of the radii of inertia/]will  occur in it, and these 
replace the corresponding moments of inertia in Euler's dynamic equations also. We will use the 
Euler angles ~, ~0, 0 as the Lagrange coordinates, which define the rotational motion of the orbital 
station. The positions of relative equilibrium of the orbital station are then found from the system of 
equations 

aw.,=o ' aw., aw2 o ar,.p .-.~-= O, .-~--= (2.4) 

In addition to the radii of inertia, these equations will contain, as parameters, the coordinates of the 
centre of mass, which are solutions of Eqs (2.1). Without considering the general case, in view of the 
complexity of the equations obtained, we will confine ourselves to the set of equilibrium positions with 

= 0. Turning to expression (1.5) and taking relations (1.2) and (1.3) into account, we can show that 
the first two equations of (2.4) are satisfied for any ~ and ~1 with ¢p = 0 and 0 = ~/2, and from the latter 
we obtain the equilibrium value of the angle ~ = ~. ,  where 

. + ls2(,  + 11-1)] 

tg~ = 13,[(~ +11)2 _rl21+1~2[(~ +!1_1)2 _r12] 
(2.5) 

15, =(1-I.t)/p~, 13:, =l.t/p~ 

3. We will investigate the stability of the positions of relative equilibrium of the orbital station obtained. 
Since the phase coordinates, which define the rotational motion of the orbital station, do not occur in 
the equations of motion of the centre of mass, the stability of the positions of relative equilibrium of 
the centre of mass (the libration points) can be considered taking only Eqs (1.4) into account. Note 
that the potential energy W1, when there is a reaction acceleration w, as can easily be shown, has no 
isolated minimum when e = 0 nor for any values of its variables and, consequently, we can only reckon 
on the possibility of gyroscopic stabilization of the libration points, i.e. only the necessary conditions 
of stability can be obtained. To do this we introduce the perturbations 

Yl = ~-~,Y2 = ~ - ~ , Y 3  = ~ - ~  

and we set up the equations of perturbed motion, assuming e = 0 in (1.4). Omitting the non-linear 
terms, we obtain 
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91 - 2y2 + bl tYl + b12Y2 + b13Y3 = 0 

92 + 2)'1 + b21Yl + b22Y2 + b23Y3 = 0 (3.1) 

373 + b3ly I + b32Y 2 + b33Y 3 = 0 

where 

bjj = - l - c x  I { + B ]  - 1  -or 2 
Lk P, ) p5 

b2l - -h i2  =-3~--[1~1(~ + p.)+ I~,(~ + p . -  1)t b31=bl3=b2l-~/~ 

b22 = -I  +a-3~2[~, /723 =/732 = --3~'~1~, /733 ---- 0( -- 3~21~ 

(P = P, + P2) 

The corresponding values ~, ~, ~ of the reaction acceleration and its orientation can be found from 
the equilibrium equations (2.1). Since the acceleration itself does not occur in the expression for the 
coefficients of system (3.1), the stability domain is most easily constructed in the configuration space ~, 
rl, 4, without using the equilibrium equations (2.1), which considerably simplifies the solution of the 
problem (here the expressions for the second partial derivative, which occur in the coefficients of system 
(3.1), are exactly the same as the corresponding expressions for the classical restricted three-body problem). 

The necessary stability conditions of the trivial solution of system (3.1) consist of the requirement 
for all the roots of the characteristic equation 

~ + ~ + ~ + ~ = 0  (3.2) 

/74 = 4 + bli + b22 + b33 

b 2 = bli/722 -/%22 - b~, - b~3 + b~b33 + b,, b33 + 4633 

to be real and negative with respect to ~2. This requirement can be satisfied by using the condition for 
the discriminant of the cubic equation corresponding to (3.2) (which guarantees that the roots are real) 
to be negative together with the Routh-Hurwitz conditions (which guarantee that they will be negative), 
written in this case as 

(3.3) 

b4 > O, bo > O, b4b2 > b 0 

The set of values of the coordinates, which satisfy inequalities (3.3), define an innumerable set of 
new libration points that are stable in the first approximation. This set is bounded by a doubly connected 
surface. In Fig. 1 we show sections of this surface by the planes ~ = 0 (symmetrical about the rl = 0 
axis of the doubly connected region, consisting of the unclosed ring and the crescent-shaped region, 
situated close to the collinear libration point L3) and ~ = 0.27 (which practically merge into a single 
line), obtained on a computer. The stability domain, therefore, splits into two parts: one of these consists 
almost entirely of points very distant from the Moon ( C ) (at a distance or more from the Earth (O)), 
and the other (of somewhat smaller dimensions) is close to the outer collinear libration point L 3 and 
includes not only the collinear points but also points which lie on both sides of the O~ axis. The latter 
are particularly attractive for use for relay purposes, since they enable the orbital station to be seen 
simultaneously from the Moon and the Earth. 
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Fig. 1. 

The maximum value of the necessary reaction acceleration in all stability domains is w = 0.51, for 
which Wma x gives 1.39 x 10 -3 m/s 2. 

Note that, although the stability conditions obtained are only necessary for the system with potential 
forces considered (i.e. which can be represented in Hamilton form) there will also be the conditions 
for complete Birkhoff stability, with the exception of certain resonance sets [8]. 

We will now investigate the stability of the orientation of the orbital station with respect to the orbital 
system of coordinates, obtained in Section 2. Since we wish to obtain the sufficient stability conditions, 
we will set up the second derivatives of the potential energy W 2. Assuming (p --- 0, 0 = r~/2, ~g = ~.,  we 
obtain 

a2w2 = a~w2 = a~w~ = 0 
a ~  aea~ aq~  

a~w~ a~w~ =(t~ - ~,):+, 
a~ ~ =3(~-~, ) / , ,  a~ ~ ae ~ = ( ~ - ~ ) / o  

f~ = [(h, - h 2 ) cos 2W - 2hi 2 sin 2¥] ,  

f~ = [3((h, cos z W +/h sin2 V) + h,2 sin 2¥) -1]o  

f0 = [3((hl sin2 ¥ + h2 c°s2 ~g) - hi2 sin 2W)-  1]° 

h, = ~,(~, + ~)~ +1+~(~, + ~ - 0  ~, ~ =1~ ~ 

= + + 

(3.4) 
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The asterisk denotes the result of substituting, instead of ~, the values determined by (2.5). It can be 
shown that after this substitution, for the set of libration points situated in the neighbourhood of the 
point L3, where rl < ~, we will have f~, > 0. The functionsf~,f0 in this region, as computer calculations 
showed, can take both positive and negative values. Here only two of the four possible different cases 
are obtained 

1)f~,>O,fc>O, fo>O and 2)fv>O, fc>O,fo<O. 

The sufficient conditions for stability (including the requirements that the second derivatives defined 
by (3.4) should be positive) will then be given by the following inequalities, which the radii of inertia 
of the orbital station must satisfy, respectively 

1)12 >13 > ll; 2)/3>/2>11. 

Similar stability conditions can also be obtained for other values of the coordinates of the centre of 
mass, situated far from the Moon and of less practical interest. In Fig. 1, in the region of the stability 
of the centre of mass with ~ = 0, we have indicated the regions of different combinations of signs of 
the functionsf~, f~0 and f0, in which sufficient conditions for stability can be satisfied directly by choosing 
a special geometry of the masses (in region l : f v  < 0 , f ,  < 0,f0 > 0, (I1 > 12 > 13); in region 2:f~ > 0, 
f ,  > 0,f0 > 0, (12 > 13 > I1); in region 3:f~ > 0,f,p > 0,fo > 0, (13 > 12 > 11); in region 4:f~ < 0,f~ > 
0,f0 > 0, (12 > II > 13); the sufficient conditions are not satisfied in the unhatched part of the region). 

The results obtained on the existence and stability of the positions of relative equilibrium of an orbital 
station also enable us to draw certain conclusions regarding the motion when the eccentricity e is non- 
zero and fairly small. Thus, when e ~ 0, both the system of equations (1.4) and the system of equations 
which define the rotational motion of the orbital station is 2r~-periodic with respect to the true anomaly 
of the Moon v (which plays the role of the independent variable) and is analytic with respect to the 
eccentricity e (it can play the role of a small parameter). Consequently, from Poincard's theorem [9] 
in the neighbourhood of the equilibrium positions obtained there can be 2n-periodic motions only if 
the characteristic equation (3.2) has no roots of the form _ ki (k = 0, 1, 2 . . . .  ). Since the system of 
equations of translational-rotational motion of the orbital station considered can be written in Hamilton 
form, it is reversible and, according to investigations carried out previously [10, 11], the characteristic 
exponents of the equations in variations for these periodic motions, apart from the square of the small 
parameter e, will be identical with the roots of characteristic equation (3.2). Hence, the stability domain 
for the libration points for e = 0, constructed above, will be practically identical for small e * 0 with 
the stability domain for this periodic motion, with the exception of a set of points which lead to parametric 
resonance, which arises [11] when ~,s, - ~.j = ik  where k is an integer. 

Only in such cases can the stability of the periodic motions break down for as small a value of e 
0 as desired. Hence, with the exception of a set of points of infinitesimal measure, the stability domain 
constructed is also conserved in practice when the eccentricity of the lunar orbit is taken into account. 
If we eliminate the set of points of the domain corresponding to second-order and third-order resonances 
[12], then, as follows from the general theory of Hamiltonian systems, the stability conditions obtained 
also guarantee stability when non-linear terms up to the third order inclusive are taken into account 
in the equations of perturbed motion. 
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